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Spiral waves, a type of “reentrant excitation,” are believed to be associated with the most dan-
gerous cardiac arrhythmias, including ventricular tachycardia and fibrillation. Recent experimental
findings have implicated defective regions as a means of trapping spirals which would otherwise drift
and (eventually) disappear. Here, we model the myocardium as a simple excitable medium and study
via simulation the interaction between a drifting spiral and one or more such defects. We interpret
our results in terms of a criterion for the transition between trapped and untrapped drifting spirals.

PACS number(s): 87.10.+e, 87.22.As, 82.20.Mj

In the United States alone, over 1000 lives are lost
daily to sudden cardiac death. Most are initiated by a
premature ventricular contraction (“premature systole”)
and begin with a regular rapid electrical rhythm (“tachy-
cardia”) in the thick left ventricular myocardium. Syn-
chrony of the contraction then deteriorates to turbulence
with irregular, frenzied heartbeat (“fibrillation”), until
finally the heart stops beating for want of oxygen [1].

One possible cause of premature systoles and tachy-
cardia is spiral waves. Myocardial tissue is an ex-
citable medium through which propagate waves of electri-
cal stimulation and muscular contraction; this has been
shown by many experiments and simulations [2-4]. In
a normally functioning heart the excitations are coher-
ent waves emanating from a pacemaker region near the
sinoatrial (SA) node. However, in certain pathological
situations, normal function is disturbed and spirals are
formed. These spirals generally have a higher frequency
than the aforementioned waves [2], which means that the
wavefronts are annihilated by collisions with the growing
spiral; eventually, the heart tissue will oscillate at the
much higher frequency of the spiral [5-7].

It has been suggested [8] that most spirals drift [2] and
eventually dissipate at a tissue border, whereupon the
heart returns to normal. However, if there exist defective

regions in the heart (such as diseased cells due to myocar--

dial infarction), the spiral may be trapped thereby caus-
ing permanent tachycardia. This idea motivates us to
investigate the interaction between a drifting spiral and
defects. Specifically, we wish to obtain some criterion
that will distinguish between drifting or trapped spirals
as a function of the size and location of these defective
regions.

As already mentioned, myocardium behaves in many
respects like a generic excitable medium. It can be ap-
proximately described, from a biophysical point-of-view,
by a set of eight ordinary and partial differential equa-
tions, the Beeler-Reuter equations [9], which are a mod-
ified version of the Hodgkin-Huxley equations for nerve
impulse transmission along axons [10]. At the present
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it is beyond our ability to numerically tackle the spiral
problem in the full Beeler-Reuter model. In addition,
even the Beeler-Reuter model is not precise enough for a
quantitatively accurate study of the cardiac action poten-
tial. However, certain key features of the Beeler-Reuter
equations are captured by the much simpler FitzHugh-
Nagumo membrane model and therefore, the latter is suf-
ficient to provide a qualitative description of the electric
behavior of the heart [4]. This model is

i = <f(w,v) + DV?u, b= g(u,v), (1)

where the variable u represents membrane potential and
v represents a slow recovery process. Here the ventric-
ular myocardium is simplified to be isotropic, though in
reality, it is anisotropic due to the elongated shape of the
muscle fibers. However, this simplification will not affect
the results qualitatively. Also, we restrict ourselves to
the two-dimensional (2D) case, although the real heart
is undeniably three dimensional. However, the 2D lim-
itation is a good approximation for many experiments
performed on slices of epicardium [2].

In the above equations, the parameter € is related to
the fact that the time scale of voltage variations (due to
fast sodium channels, for example) is much smaller than
that of v (due to slow calcium and/or potassium chan-
nels). It is well known that the width of the boundary
layers, i.e., regions of space where u makes fast jumps,
is (O+/e€) [11] for very small € . Crude estimates of the
relevant size of € for myocardium give € ~ 1073 to 1072.
We will vary e within this range of values.

Finally, we model the local kinetics with [12, 13]

fu,v) = u(l —u)fu —um(v)], 9(u,v) =u-v, ()

where the threshold “voltage” is given by uw (v) = (v +
b)/a, and a and b are parameters. The local kinetics, i.e.,
the dynamics in the absence of spatial derivatives, has a
stable but excitable fixed point at the intersection of the
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nullclines f(u,v) = 0 and g(u,v) = 0.

As has been stressed by Barkley [13], the advantage
of this model kinetics is that the excitation term can be
time stepped with little computational effort. At any
fixed spatial location, the system spends almost all its
time within a very “thin layer” near the left branch of
the u nullcline and therefore very little error results from
setting © = 0 at the update step whenever the system is
within u< § with § ~ 10~%; the advantage gained is that
almost every step of the model kinetics requires just one
conditional evaluation and one floating-point multiplica-
tion. In practice, we have used the program EZ-SPIRAL,
obtained from Barkley [14]. One complication is that
spirals simulated in this manner show core meandering
when b is increased or when a is decreased. In order to
focus on the interaction of a spiral with defects, we avoid
the regime of parameters that leads to meandering.

Now let us consider a drifting spiral. In order for
the spiral to move, there must exist some inhomogene-
ity in the excitable medium [15, 16]. For example, there
is experimental evidence that spiral drift in rabbit my-
ocardium is due to a gradient in the refractory period
[17]. The simplest way to introduce such inhomogeneity
in our simulation is to set up a gradient in the param-
eter b. So, we replace b by b(x) = by + vz, where v is
the gradient. The direction and the magnitude of the
drift velocity depend on by, v, € as well as the initial po-
sition of the spiral. As an example, one trajectory of a
spiral tip is shown in Fig. 1(a), where the spiral tip is
defined as the intersection of the two contours u = -21 and
f(u = 3,v) = 0. The bigger v and b(z) are, the faster
the spiral drifts, and the larger the size of the spiral core.
Again, to avoid meandering, one must be careful not to
choose too large a value for v.

Next we need to define a defect in the simulation. The
simplest model of a damaged region of myocardium is
that the local kinetics is taken to be less excitable than
that of normal tissue. The extreme case is a region of
zero excitability. In our model, this consists of replacing
b(z) by a constant B. A completely unexcitable defect
has B = B* = %, while a partially excitable defect has
B < B* but bigger than b(z) around it. One way to
see this is to note the condition for minimum excitability
required for spiral wave propagation in excitable media
is (v* — Vs)min = O(e%) where v, is the value of v in the
rest state and v* is that which corresponds to zero wave
speed [18]. It is easy to see that for our case vy = 0
and v* = b — a/2. The shape of the defect is chosen to
be a circle with variable radius. The simulation is done
on a square grid of area L? containing N? grid points;
typically, N = 101 and L = 20. For all results reported
here, a = 1, and by = 0.061.

Let us first focus on the trapping of a drifting spiral
by a completely unexcitable region. We fix the gradient
of b(z) (i-e., v) and ¢, and vary the size of the defect and
the impact parameter of the drifting spiral. To avoid
effects merely due to the inhomogeneity of our system,
we always start the spiral at the same position and fix the
center of the defect circle to lie on a vertical line through
the initial position of the center of the spiral core. The
impact parameter is evaluated by using a straight-line
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approximation to the early-time trajectory of the spiral
core.

In the simulation, the spiral will either be trapped by
the defect or escape to the system boundary. An example
of a trapped trajectory is shown in Fig. 1(b). The curv-
ing of the trajectory towards the defect, which occurs in
almost all cases of either trapped or untrapped spirals,
is consistent with an attractive fairly short-range interac-
tion; similar interactions for the spiral-spiral system have
been predicted elsewhere [19].

The result of varying the defect size and the impact
parameter in this problem is depicted in Fig. 2. There
is a critical curve separating capture from escape. In-
terestingly, when the impact parameter d is large, the
critical curve becomes a straight line with slope 1. This
is due to the fact that if the defect is large, the only rele-
vant parameter is the distance from the spiral core to the
edge of the defect region. Furthermore, this asymptotic
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FIG. 1. (a) The tip trajectory of a drifting spiral with

a=1, by = 0061 v=25x10"3 e = 002, and grid pa-
rameters N = 101, L =20. The spiral starts from the center
of the domain, and eventually moves parallel to the no-flux
boundary. (b) A trapped spiral for the same parameters. The
dashed line represents the contour of the defect.
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FIG. 2. Critical curve for the spiral trapping.

straight line intersects the r. axis at a negative value r}.
We expect that r} is directly related to the effect of the
boundary layer of the spiral, which scales as 1/e. We vary
the value of € and plot r}; in Fig. 3. Considering the pre-
cision of r., the impact parameter, and the drift velocity
in the simulation, the data are consistent with |r?| being
proportional to the width of the boundary layer.

If we change the defect to be partially excitable, we
find no qualitatively significant changes in behavior —
of course the trapping will be weaker, the critical line
will be shifted, and sometimes the spiral will meander
around the defect. We note in passing that the rotation
period and the wavelength of the trapped spiral are larger
than those of the initial spiral. This is consistent with
predictions due to Keener and Tyson [20] as to the effect
of defect size on frequency selection. Also, as € decreases
the period decreases, again in accord with expected spiral
behavior [21].

‘We have also studied, albeit qualitatively, the scatter-
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ing of a drifting spiral by two defects. If the (identical)
defects are well separated, the spiral will be scattered or
trapped by the closer defect as if the second one did not
exist. On the other hand, if the two defects are very close
to each other, and if the spiral is near enough, the spiral
will be trapped and will rotate around the envelope of the
two defects. In the intermediate case, the trapped spiral
first rotates around two defects and eventually winds up
being trapped on only one of them. We have also exam-
ined the case in which the two defects have different size.
The result is qualitatively the same as above, though the
defect with bigger size has a stronger influence on the
spiral.

Let us briefly consider the reverse problem of the de-
trapping of a spiral around a defect. One can imagine
that if the gradient increases above a critical value, a
trapped spiral will leave the defect and drift away. Un-
like the previous simulation, which tested for capture by
a bound state, this calculation considers whether a bound
state exists at all. We first fix € and increase the gradient
v until we obtain detrapping; if this is done as a function
of defect size, this defines the curve v, versus r given in
Fig. 4. At very large r, the critical gradient decreases;
this is due both to the fact that the value of b on the far
side of a large defect is changed from its value at the cen-
ter (and drift speed increases with b at fixed v) as well as
to an intrinsic decrease in binding as the radius of curva-
ture increases. Also, the critical gradient is a decreasing
function of +/e.

In summary, we have used a modified FitzHugh-
Nagumo model to study the interaction between a drift-
ing spiral and defects. Our simulations show that spiral
trapping requires a critical defect size that depends on
both excitability and inhomogeneity. Though our work
was motivated by recent experiments on thin layers of
heart muscle, this process can be studied in any excitable
medium. Conversely, application to a quantitative de-
scription of these processes in the heart would require
extensions of this work to more complex models and to
three-dimensional geometries.

Note added. After this work was completed, we learned
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FIG. 4. Critical curve for the spiral detrapping at ¢ = 0.02
and bo = 0.17.
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that the phenomena of the spiral trapping have also been
observed by Rogers and McCulloch in their simulations
[22], and by Jalife and co-workers in experiments using
epicardium [8]. Their (unpublished) results are qualita-
tively consistent with the findings here.
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